If it's not what You are looking for type in the equation solver your own equation and let us solve it.
292=-16t^2+145t+3
We move all terms to the left:
292-(-16t^2+145t+3)=0
We get rid of parentheses
16t^2-145t-3+292=0
We add all the numbers together, and all the variables
16t^2-145t+289=0
a = 16; b = -145; c = +289;
Δ = b2-4ac
Δ = -1452-4·16·289
Δ = 2529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2529}=\sqrt{9*281}=\sqrt{9}*\sqrt{281}=3\sqrt{281}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-145)-3\sqrt{281}}{2*16}=\frac{145-3\sqrt{281}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-145)+3\sqrt{281}}{2*16}=\frac{145+3\sqrt{281}}{32} $
| 6k2=-4k+10 | | 6(v-8)=-3v+6 | | 19+7y=4 | | (4)+x=64 | | 30+0.35p=86 | | 3x(4)=36 | | W+12-2(w-24)=0 | | -3-9=3x+8-2x | | 30-6+2m=58 | | y+1/2=-(3/5) | | (2)+3x)=45 | | -34=-8v+6(v-5) | | -7w+4(w-4)=-37 | | -34=-8v+(v-5) | | 3x-4+10=20+x | | 3x-22=0 | | 3x+41=127 | | 14x-7+8x+10x=180 | | 315+7x=12x | | 4v2=96+8v | | 2u=u+13 | | (3x-6)(7x+6)=0 | | -7y+9=2(y-6) | | 2(m+6)=4m | | 3a+7-3=4+5a | | y=1-10/7 | | -4b2+8b+55=-5 | | 12x+-8=16x | | -4x/8=4x+8-2x | | 11x-5x=42 | | 18+8x=14x | | -4y+3=-2(y+4) |